Regional Assessment of Weather and Freight Impacts

DTFH61-12-D-00048-T-13005

FHWA Road Weather Program Stakeholder Meeting

Salt Lake City, Utah

Presented by:

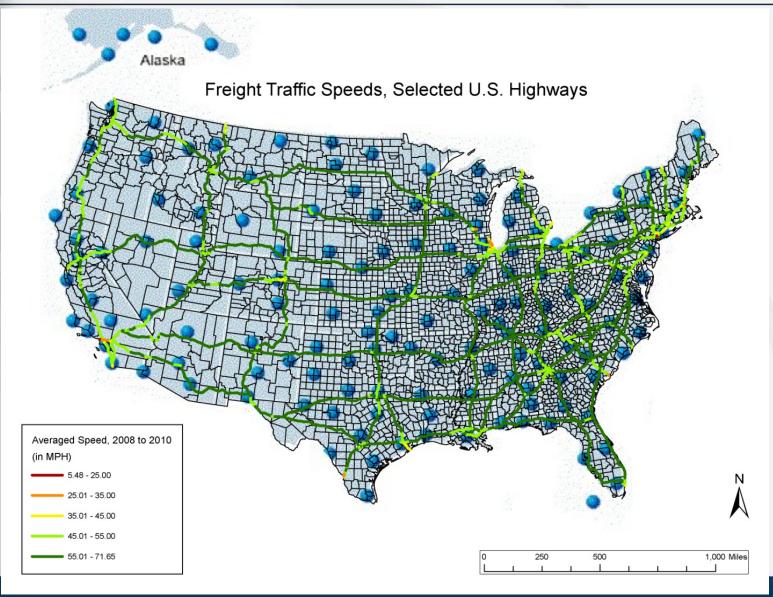
Cambridge Systematics

August 13, 2014

Project Background

Background

- Commercial vehicles main mode of freight transportation
 - » \$500 billion freight sector
 - » 70% of total value and 60% of weight moves by truck
 - » Estimates that adverse weather is responsible for 12% to 25% of all delay
 - » Trucking delays due to weather = \$3.1 billion/yr for the 50 largest cities
 - » Lost commerce due to snow closures = \$10 billion/day
- Other economic impacts of adverse weather
 - » More than \$2 billion/yr is spent on snow and ice control by State DOTs
 - » Weather accounts for 25% of non-recurring congestion



Project Background

- Ist Phase Study 2012
 - » National estimate of delay \$8-\$9 billion annually
 - » Developed model primarily on state-by-state basis
 - » Key data sources used 3 year period 2008 to 2010
 - ATRI truck travel speed data (now in FHWA NPMRDS dataset)
 - NOAA weather data Global Summary of the Day (GSOD)
 - Truck O-D data developed by project team from Global Insight Data
 - » Recommendations
 - Finer detail needed on truck movements and weather events
 - Conduct test scenarios in smaller areas/regions

Weather Data - GSOD

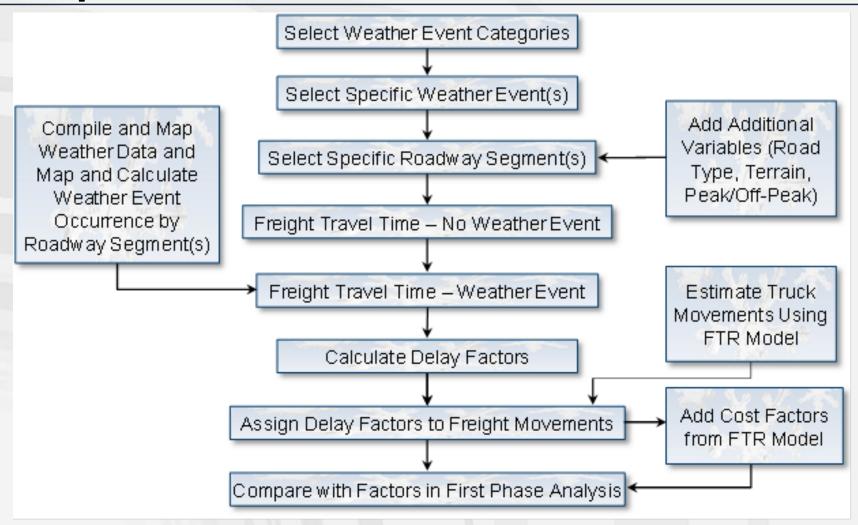
These stations were selected because they overlaid the truck speed data very well

Second Phase

Key Analysis Questions

- How do different weather events impact truck travel speed and delay?
- What is the impact when different weather events combine?
- How do impacts vary between regions and roadways?

Weather Conditions	Freeway Traffic Flow Reductions						
	Average Speed	Free-Flow Speed	Volume	Capacity			
Light Rain/Snow	3%-13%	2%-13%	5%-10%	4%-11%			
Heavy Rain	3%-16%	6%-17%	14%	10%-30%			
Heavy Snow	5%-40%	5%-64%	30%-44%	12%-27%			
Low Visibility	10%-12%	- 1		12%			



- Areas of improvement to previous methodology
 - » Truck speed data on additional roads beyond NHS
 - » More detailed freight O/D and trip length data
 - » Distinguish between impacts of "regular" weather events and "major" events
 - » Comparison of truck speed data to other highway speed data (Advanced Traffic Management Systems)
 - » Greater detail in weather data
 - Surface condition
 - Increased temporal detail (hourly at minimum)
 - Increased geographic detail (closer to truck routes)

- Selection of case study locations
 - » Key trucking corridors
 - » Major access route to ports or key industrial/warehouse areas
 - » Different types of terrain
 - » Variety of climatic conditions
 - » Vulnerability to major weather events
 - » Detailed reliable roadway performance data available
 - » Data available to advance knowledge of freight OD's, load content and supply chain
 - » Availability of detailed weather data

» Sample of relationships to be derived from weather and roadway data

Percentage of Capacity In Use	<0.21	0.21- 0.40	0.41- 0.70	0.71- 0.79	0.80- 0.95	>0.95
Standard	100%	100%	100%	100%	100%	100%
Fog	73%	70%	67%	63%	60%	56%
High Wind	93%	92%	91%	89%	88%	87%
Very High Wind	87%	86%	85%	83%	82%	80%
High Wind and Light Snow	84%	81%	78%	76%	72%	69%
High Wind and Moderate Snow	75%	70%	65%	59%	53%	47%
Very High Wind and Moderate Snow	69%	64%	59%	53%	47%	40%

- Key Issues
 - » Comparability of different regions
 - Driving habits
 - Different types of freight content and movement patterns
 - » Use of gridded weather data
 - Potentially provides more detail but processing can be resource intensive
 - Assess tradeoffs
 - » Adequate sample to isolate weather events (account for incidents, construction, etc.)

Schedule

Task Name and Deliverables	Due Dates			
Task 1. Project Management				
1.1 – Kickoff Meeting	July 23			
1.1.1 – Kickoff Meeting Presentation	July 21			
1.2 – Draft PMP	July 17			
1.3 – Final PMP	August 11			
1.4 – Project Status Updates	Monthly			
1.5 - Closeout Meeting	2 weeks prior to contract closeout			
Task 2. Develop Proposed Approach and Methodology				
2.1 – Potential Data Sources and Resolutions Summary	November 7			
2.2 - Potential Study Areas Summary	November 7			
2.3 – Recommended Study Area and Data Source(s) Document (Technical Memo)	November 7			
Task 3. Regional Scaling and Impacts				
3.1 – Impact Assessment Plan and Methodology – with Control Case	January 9			
Task 4. Test and Verify Results and Develop Weather De	elay Index			
4.1 – Detailed Report	May 1			
Task 5. Assess Impacts at Varying Levels of the Supply	Chain			
5.1 – Detailed Report of Freight Model Refinements and Varying Impacts of the Supply Chain	July 1			
Task 6. State Congestions Modeling Analysis				
6.1 – Memo of Congestion Modeling Analysis	September 4			
Task 7. Final Report				
7.1 – Draft Final Report	October 16			
7.2 – Final Report	November 13			
7.2 – Final Report 508	December 31			

Help?

- Interested in having your area as a case study?
- Data on surface weather conditions?
 - » Variety of conditions?
 - » Precipitation type?
 - » Precipitation intensity?
 - » High temporal frequency?
- Weather data and traffic data integrated through ATMS?
- Major generator of truck traffic?

Contact

- Paul Pisano, FHWA Contract Manager
 - » 202-366-1301
 - » paul.pisano@dot.gov

- Dan Krechmer, Consultant Project Manager
 - » 617-234-0492
 - » <u>dkrechmer@camsys.colm</u>

Questions/Discussion

